
LECTURE 17

ZIQUAN YANG

Last time we learned the formula to compute the area of a parametrized surface r : Ω → R3, which is

(1)
∫∫

Ω

∥ru × rv∥dudv.

Note that it is very similar to how we compute the length of a parametrized curve r : [a,b]→ Rn∫
C

ds =
∫ b

a
∥r′(t)∥dt,

where s is the parameter for the unit speed parametrization. Motivated by this, in Equation (1) let us also
give ∥ru × rv∥dudv a name and call it dσ .

Once you learn about how to find the area of a surface, you know how to integrate a function on the
surface, because finding the area is nothing but integrating the constant function 1.

Example 1. We compute the integral of G(x,y,z) = x2 over the cone surface S defined by:

z =
√

x2 + y2, 0 ≤ z ≤ 1.

First, we parametrize the cone by

x = r cosθ , y = r sinθ , z = r, where 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

The surface element dσ is:
dσ =

√
2r dr dθ .

The integral becomes: ∫∫
S

x2 dσ =
∫ 2π

0

∫ 1

0
r2 cos2

θ ·
√

2r dr dθ =
π
√

2
4

.

Another thing we can do about curves is to compute the circulation and flux of a vector field defined
in an open neighborhood of the curve. While the former does not make sense for a surface (as surfaces
have tangent planes instead of tangent vectors), the latter does.

A normal vector field on a surface S ⊂R3 is a continuous assignment of a unit vector n(p) orthogonal
to the tangent plane at each point p ∈ S. The surface S is orientable if such a normal vector field exists
globally, meaning there is a consistent choice of "up" or "down" direction across the entire surface. The
choice of n determines an orientation of S; for example, the standard orientation of the sphere is given by
the outward-pointing normal. If no such continuous n exists, the surface is non-orientable. Formally, an
orientable surface admits two possible orientations, corresponding to n and −n. A prototypical example
of a non-orientable surface is the Möbius strip.

FIGURE 1. Möbius strip
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A parametrized (smooth) surface r : Ω → S ⊂R3, where Ω ⊂R2, naturally carries an orientation. The
cross product ru×rv yields a normal vector to the tangent plane at each point, and if ru×rv ̸= 0, we may
define the unit normal vector field

n =
ru × rv

∥ru × rv∥
.

This choice of n induces a consistent orientation on S as long as ru × rv varies continuously. Reversing
the parametrization (e.g., swapping u and v) flips the normal vector, giving the opposite orientation.
Thus, a regular parametrization r automatically provides an orientation for S.

Now, given a vector field F defined over an open neighborhood of an oriented surface S. We define
the flux of F through S by ∫∫

S
F ·ndσ .

In the case of a parametrized surface r : Ω → R3, the above simplies to∫∫
Ω

F(r(u,v)) · (ru × rv)dudv.

Example 2. Find the flux of F = yz i + x j − z2 k through the parabolic cylinder y = x2, 0 ≤ x ≤ 1,
0 ≤ z ≤ 4. The surface is oriented such that the normal vector has a positive x-component.

The parabolic cylinder can be parameterized using x and z as parameters:

r(x,z) = x i+ x2 j+ zk, 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.

Compute the tangent vectors:

rx =
∂r
∂x

= i+2x j, rz =
∂r
∂ z

= k.

The normal vector is given by the cross product rx × rz:

rx × rz =

∣∣∣∣∣∣
i j k
1 2x 0
0 0 1

∣∣∣∣∣∣= 2x i− j.

The given orientation requires the normal vector to have a positive x-component. Since the x-component
here is 2x (which is positive for x ∈ [0,1]), we use this normal vector as is.

The flux of F through the surface S is given by:∫∫
S

F ·ndσ =
∫∫

Ω

F(r(x,z)) · (rx × rz)dxdz,

where Ω = [0,1]× [0,4]. Therefore, the answer is∫∫
Ω

(2x3z− x)dxdz =
∫ 1

x=0

∫ 4

z=0
(2x3z− x)dzdx = 2.


